Global solutions for $$H^s$$-critical nonlinear biharmonic Schrödinger equation
نویسندگان
چکیده
We consider the nonlinear biharmonic Schr\"odinger equation $$i\partial_tu+(\Delta^2+\mu\Delta)u+f(u)=0,\qquad (\text{BNLS})$$ in critical Sobolev space $H^s(\R^N)$, where $N\ge1$, $\mu=0$ or $-1$, $0<s<\min\{\fc N2,8\}$ and $f(u)$ is a function that behaves like $\lambda\left|u\right|^{\alpha}u$ with $\lambda\in\mathbb{C},\alpha=\frac{8}{N-2s}$. prove existence uniqueness of global solutions to (BNLS) for small initial data.
منابع مشابه
Singular Solutions of the Biharmonic Nonlinear Schrödinger Equation
We consider singular solutions of the L 2-critical biharmonic nonlinear Schrödinger equation. We prove that the blowup rate is bounded by a quartic-root, the solution approaches a quasi–self-similar profile, and a finite amount of L 2-norm, which is no less than the critical power, concentrates into the singularity. We also prove the existence of a ground-state solution. We use asymptotic analy...
متن کاملDirect search for exact solutions to the nonlinear Schrödinger equation
A five-dimensional symmetry algebra consisting of Lie point symmetries is firstly computed for the nonlinear Schrödinger equation, which, together with a reflection invariance, generates two five-parameter solution groups. Three ansätze of transformations are secondly analyzed and used to construct exact solutions to the nonlinear Schrödinger equation. Various examples of exact solutions with c...
متن کاملVariational solutions for the discrete nonlinear Schrödinger equation
The interaction and propagation of optical pulses in a nonlinear waveguide array is described by the discrete nonlinear Schrödinger equation i∂zψn = −D(ψn+1 + ψn−1 − 2ψn) − γ|ψn|ψn, (1) whereD is a dispersion (or diffraction) coefficient, and γ is a measure of the nonlinearity. By means of the variational approximation, we study the discrete soliton solutions of this equation. We use a trial fu...
متن کاملRing-type singular solutions of the biharmonic nonlinear Schrödinger equation
We present new singular solutions of the biharmonic nonlinear Schrödinger equation (NLS) iψt(t,x)− ψ + |ψ |2σψ = 0, x ∈ R , 4/d σ 4. These solutions collapse with the quasi-self-similar ring profile ψQB , where |ψQB(t, r)| ∼ 1 L2/σ (t) QB ( r − rmax(t) L(t) ) , r = |x|, L(t) is the ring width that vanishes at singularity, rmax(t) ∼ r0L(t) is the ring radius, and α = (4 − σ)/(σ (d − 1)). The blo...
متن کاملExistence of Positive Solutions to a Nonlinear Biharmonic Equation
In this note we use the Nehari manifold and fibering maps to show existence of positive solutions for a nonlinear biharmonic equation in a bounded smooth domain in Rn, when n = 5, 6, 7. Mathematics Subject Classification: 35J35, 35J40
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für Angewandte Mathematik und Physik
سال: 2021
ISSN: ['1420-9039', '0044-2275']
DOI: https://doi.org/10.1007/s00033-021-01608-5